VR gets touchy-feely with electronic skin – a game-changer for stroke rehabilitation and prosthetics to gaming and social media
Virtual reality technology has broadened our horizons to a dizzying degree, but scientists are now working on a physical dimension – that will be able simulate everything from changing temperatures to being punched – with applications in medicine, design and leisure
John Rogers, a professor of bioengineering at Northwestern University in the United States, says that virtual reality (VR) technology is all very well. But while it can offer a deeply immersive experience, that experience is constrained: it is just an audiovisual one. What if physical sensation could be added to that?
“Electronic skins” – which add tactile sensation to virtual reality experiences – have been prototyped before, but using clunky electrodes and typically offering far from the instantaneous feedback required to make the touch experience feel as real as the visual one. But late last year, Rogers unveiled – after a decade of work – a wireless, battery-free silicon gel smart skin that allows the real-time recreation of a realistic touch sensation as transmitted from another device.
That could prove a game-changer for, say, stroke rehabilitation or prosthetics, but also the VR technologies used in gaming, social media and entertainment, or in prototype design and development. People will be able to feel a virtual touch in a way that feels authentic. The sensations felt by one person could be played back on another, or on a crowd of people.
It is certainly a step on from the myriad (and often blurred) spins on VR that also have made developmental advances in recent years – most notably the likes of augmented reality (AR), in which a real-world environment is enhanced by computer-generated information, and MR, or mixed reality, which merges physical and digital objects in real time. To date, MR has been used by golf spectators, in the teaching of anatomy and in the creation of lifelike holographic “people”.
“The idea [for the smart skin] originally had medical uses in mind, but obviously the tech is applicable to VR,” says Rogers, who is now working on a thinner, lighter version of his electronic skin, with a greater wireless range, too. Inevitably, this has received interest from VR developers. “That’s a space we’re planning to work in ourselves now. Skin sensation is the only mode of physical interaction with our environment, and when you think of human interaction, nothing is more intimate or communicative. So there’s a compelling need to bring that to VR.”
Virtual reality haptics – as the field of bringing touch to VR is called – already offers a less realistic form of touch sensation than the kind Rogers’ smart skin promises. Start-ups such as Plexus, Kaaya Tech, Exiii and HaptX have developed the likes of gloves, and even full-body motion capture suits, wearable computer interfaces that provide haptic feedback – through subtle vibrations – to their wearers. Or, as the marketing for Teslasuit puts it, the ability “to simulate experience and accelerate mastery in the physical world”.
How do these devices typically work? They house many actuators – which convert a signal into mechanical motion – that deliver variable frequencies, patterns and intensities to reflect certain stimuli; whether, for instance, the virtual environment is hot or cold, wet or dry, rough or smooth. There are limits, though: while Rogers is working on actuators that could mimic a twisting and other distinct physical sensations, he points out that recreating force – say, the sensation of being punched – will require a different, for the moment unclear, approach.